RESEARCH ARTICLE

miR-29 Family as Epigenetic Regulators of DNMTs in Prostate Cancer and Benign Prostatic Hyperplasia

Yudi Gebri Foenna ^{1,#,*}, Nilüfer Şahin Calapoğlu^{2,#}, Okan Sancer², Muhammet Yusuf Tepebaşı³, Mustafa Calapoğlu⁴

Department of Biology, Faculty of Science and Technology, Universitas Medan Area, Jl. H. Agus Salim Siregar, Medan 20223, Indonesia ²Department of Medical Biology, Faculty of Medicine, Süleyman Demirel Üniversitesi, Süleyman Demirel Cd. Çünür Mahallesi, Isparta 32260, Türkiye ³Department of Medical Genetics, Faculty of Medicine, Süleyman Demirel Üniversitesi, Süleyman Demirel Cd. Cünür Mahallesi, Isparta 32260, Türkiye ⁴Department of Biochemistry, Faculty of Science and Literature, Süleyman Demirel Üniversitesi, Süleyman Demirel Cd. Çünür Mahallesi, Isparta 32260, Türkiye

> *Corresponding author. Email: yudigebri97@gmail.com *Both author contribute equally as first authors

Received date: Nov 29, 2024; Revised date: Feb 4, 2025; Accepted date: Feb 14, 2025

Abstract

ACKGROUND: The miR-29 family (miR-29a/b/c) is recognized as a tumor suppressor, directly targeting DNA methyltransferases (DNMTs), key regulators of epigenetic gene silencing. Even though miR-29 has been implicated in tumor progression, its regulatory interaction with DNMT3A/3B, particularly in prostate cancer (PCa), has not been elucidated well. This study was conducted to explore the potential of miR-29a/b/c in targeting DNMT3A/3B in PCa and benign prostatic hyperplasia (BPH), addressing a critical gap in understanding their epigenetic role.

METHODS: This study used tissue samples that were taken surgically from 30 subjects that consisted of 15 diagnosed PCa and 15 BPH patients (as the control group), aged between 18-75 years, with urinary system disorders and had a prostate specific antigen (PSA) value between 1.18 and 56.15 ng/dL. The miR-29a/b/c and DNMT3A/3B expressions were measured using quantitative real-time PCR (qRT-PCR). The variations in mean values across groups, the associations between miR-29a/b/c and DNMT3A/3B expression levels parameters, as well as the correlation between miR-29 levels and DNMT3A/3B variables were then statistically analyzed.

RESULTS: The expression levels of miR-29a/b/c were significantly downregulated in the PCa subjects compared to the BPH subjects (p<0.05), and negative correlations were observed between miR-29a/b/c and DNMT3A/3B in the PCa subjects (p<0.001). In addition, a significant inverse correlation was detected only between miR-29a and DNMT3B in BPH subjects

CONCLUSION: The results of this study indicated that miR-29a/b/c in PCa may act as a negative regulator directly targeting DNMT3A/3B. These findings support the role of miR-29s in developing miRNA-based strategies for treating PCa.

KEYWORDS: prostate cancer, benign prostatic hyperplasia, epigenetic, DNA methyltransferases-3A/3B, miR-29a/b/c

Indones Biomed J. 2025; 17(2): 134-42

Introduction

Cancer is a disease characterized by uncontrolled cell growth and proliferation that disrupts the normal functions of the body. Prostate cancer (PCa), one of the most common types of cancer in men, takes the second place after lung cancer.(1) Benign prostatic hyperplasia (BPH) is another common type of prostate disease in men. BPH is caused by the appearance of an abnormal number of cells (hyperplasia) that increases with age.(2,3)

Print ISSN: 2085-3297, Online ISSN: 2355-9179

According to the World Health Organization's International Agency for Research on Cancer (IARC), PCa cases differ in various regions of the world.(4) These

variations are thought to be related to the prostate specific antigen (PSA) test, which is widely used for PCa screening in developed countries. The PSA test is currently the most commonly used PCa screening method and plays a role in the diagnosis, staging and further treatment of PCa. However, the PSA level may not always be an indicator for malignant prostate disease. Although PSA test is a highly sensitive screening tool, but it is not specific in differentiating PCa from BPH.(5) Due to the limited diagnostic power of PSA tests, the search for new biomarkers for the diagnosis of PCa has been ongoing for many years. Epigenetics is potentially considered to be one of these biomarkers.

Epigenetics refers to heritable changes in gene expression that occur independently of alterations in the DNA sequence.(6) Key epigenetic mechanisms include DNA methylation, histone modifications (acetylation and methylation), and non-coding RNAs (ncRNAs).(7) DNA methylation plays a critical role in regulating gene activity during processes such as DNA repair, recombination, and replication.(8) This process involves the transfer of a methyl group from S-adenosylmethionine (SAM) to the 5'-carbon of cytosine in the CpG region, which are rich in cytosine and guanine dinucleotides. DNA methylation is mediated by DNA methyltransferases (DNMTs), which not only maintain *de novo* methylation but also act as transcriptional repressors.(9.10)

MicroRNAs (miRNAs) are small ncRNA molecules that bind to target mRNA, influencing gene expression. (11,12) Depending on their expression profiles, miRNAs can function as oncogenes or tumor suppressors.(13,14) Since the early 2000s, miRNAs have gained attention as potential biomarker in PCa due to their involvement in diagnosis, prognosis, and therapeutic responses.(11) Among the various miRNAs, the miR-29 family (miR-29a/b/c) has an important role in various pathophysiological processes reported in many studies such as targeting 677 human genes. The miR-29s has been widely observed to exhibit an inverse relationship with DNMT3A/3B across various cancers, including liver, stomach, and lung cancer. (15) In lung cancer, miR-29s have been shown to bind to the 3'UTR region of mRNA and trigger the suppression of DNMT3A/3B.(16) Research focusing on epigenetic mechanisms further indicates that the miR-29s can target DNMT3A/3B to reverse aberrant DNA methylation patterns.(17)

Despite these findings, limited studies have explored the interaction between miR-29s and DNMTs in prostaterelated conditions, leaving a crucial gap in understanding their role in PCa and BPH. Investigating the expression patterns of miR-29 and its interaction with DNMTs in prostate diseases are essential for gaining deeper insights into their potential as novel biomarkers for diagnosis and prognosis. This research was also performed to provide supporting information for improving the survival outcomes in patients and the development of miRNA-based therapeutic strategies.

Methods

Subjects Recruitment and Tissue Samples Collection

In this study, 30 patients planned for prostate biopsy due to clinical suspicion of PCa who did not receive any preoperation treatment between October 2022 and June 2023, at The Urology Polyclinic of Süleyman Demirel University Hospital, Isparta, Turkey, were included in this study. According to the histopathological evaluation of prostate core biopsies conducted by a pathologist, the subjects were categorized into two groups: 15 individuals with PCa and 15 BPH. Data on serum PSA levels, Gleason Score, and WHO 2016/ISUP (International Society of Urological Pathology) grade groups were gathered from the standard medical records of each patient. This study has been approved by the Ethical Committee of Süleyman Demirel University, Faculty of Medicine (meeting date: April 19th, 2022; the number of decisions: 132) and was conducted in accordance with the ethical guidelines of the Declaration of Helsinki.

Quantitative Real-time Polymerase Chain Reaction (qRT-PCR) Detection

Total RNA of 30 fresh tissue biopsies were extracted by using a total RNA Isolation Kit (Cat. No. MG-RNA-01-100; Hibrigen, Gebze, Turkey), according to the manufacturer's protocol. The RNA quality validated by A260/A280 in NanoDrop ND-1000 (Thermo Fisher Scientific, Waltham, MA, USA). Reverse transcription was performed with TaqManTM Advanced A.B.T.TM miR cDNA Synthesis Kit, (Cat. No. C04-01-05Atlas Biotechnology; Turkey Atlas Biotechnology, State College, PA, USA). The expressions were analyzed using the real-time quantitative polymerase chain reaction (qPCR) SYBR-Green MasterMix (Cat. No. Q03-02-01; Atlas Biotechnology) on a CFX96 real-time qPCR system (Bio-Rad, Hercules, CA, USA). The settings were configured according to the instructions provided in the kit's manual. U6 small RNA (U6) and β -Actin mRNA expression were used for normalization. The primer sequences (5'-3') were shown in Table 1.

Table 1. Specific primer sequences of miRNA and genes.

Gene	Specific Primer Sequence
U6	F: CTGCGCAAGGATGACACGCA
	R: GTCGTATCCAGTGCAGGGT
hsa-mir-29a-3p	F: AACACGCATGACTGATTTCTTTTG
	R: GTCGTATCCAGTGCAGGGT
hsa-mir-29b-3p	F: AACAAGCTTCAGGAAGCTGG
	R: GTCGTATCCAGTGCAGGGT
hsa-mir-29c-3p	F: AACAAGATCTCTTACACAGGCTGA
	R: GTCGTATCCAGTGCAGGGT
β-Actin (House Keeping)	F: CATGTACGTTGCTATCCAGGC
	R: CTCCTTAATGTCACGCACGAT
DNMT3A	F: TATTGATGAGCGCACAAGAGAGC
	R: GGGTGTTCCAGGGTAACATTGAG
DNMT3B	F: GGCAAGTTCTCCGAGGTCTCTG
	R: TGGTACATGGCTTTTCGATAGGA

The $2^{-\Delta\Delta Ct}$ comparative method was used for relative quantification of gene expression. To determine the specificity of amplification, qPCR products were evaluated using melting curves. Each sample was run in triplicate.

Statistical Analysis

Statistical analyses were performed using the SPSS 22.0 package (IBM Corporation, Armonk, NY, USA). All values are expressed as mean±standard deviation (SD). Differences in mean values between groups were analyzed using Student's unpaired t-test. Correlations between *miR-29a/b/c* expressions and *DNMT3A/3B* parameters were revealed using Pearson's correlation test. The relationship

between miR-29 family levels and DNMT3A/3B variables was assessed by linear regression. A p<0.05 was statistically considered significant for all the tests.

Results

Out of 30 subjects, 15 were diagnosed with BPH and 15 with PCa, and the relevant experimental groups were formed. No difference in age was found between the groups (p=0.679). PSA values were found to be statistically significantly higher in the PCa group than in the BPH group (p=0.026). Transrectal ultrasound (TRUS)-prostate volume was found to be statistically significantly higher in the BPH group (p=0.036). Among the PCa subjects, most had a clinical stage of T2 which was 8 (53.3%) followed by T1 which was 7 (46.6%); and had Gleason Score of 6 which was 8 (53.3%) (Table 2).

Inverse Association between *miR-29a/b/c* and *DNMT3A/3B* Expressions in BPH and PCa Subjects

In this study, statistically significant differences was observed in the expressions of *hsa-mir-29a-3p*, *hsa-mir-29b-3p* and *hsa-mir-29c-3p* from the miR-29 family revealed by RT-qPCR analysis between PCa and BPH groups (Figure 1A-1C).

The expression of hsa-mir-29a-3p was upregulated in the BPH group (1.136 \pm 0.629), while it was downregulated in PCa (0.470 \pm 0.356). The miR-29a-3p expression was significantly decreased in PCa (p=0.002) (Figure 1A). The

Table 2. Clinicopathological details of patients included in the study.

Clinicopathologic Variables	BPH (n=15)	PCa (n=15)		
Age (years), median (IQR)	62 (53-75)	68 (54-75)		
PSA level (ng/mL), median (IQR)	3.95 (1.58-16.00)	8.60 (5.18-55.10)		
TRUS-prostate volume (mL), median (IQR)	86 (40-130)	70 (45-100)		
Clinical stage, n (%)				
T1	n.a.	7 (46.6)		
T2	n.a.	8 (53.3)		
Т3	n.a.	-		
Biopsy Gleason Score, n (%)				
6	n.a.	8 (53.3)		
7	n.a.	2 (13.3)		
8	n.a.	2 (13.3)		
9	n.a.	3 (20.0)		

n.a.: not applicable.

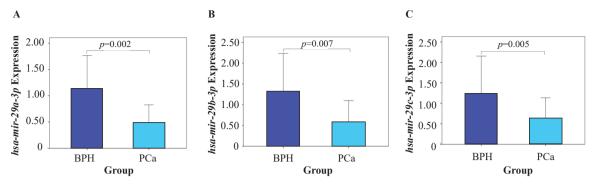
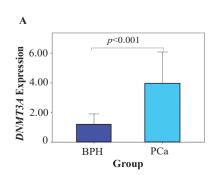


Figure 1. miR-29 family expressions of BPH and PCa groups. A: miR-29a-3p expression. B: miR-29b-3p expression. C: miR-29c-3p expression. U6 was used as an internal control.

hsa-mir-29b-3p expression was downregulated in the PCa group (0.581±0.518), while it was upregulated in the BPH group (1.317±0.917). These results revealed a statistically significant decrease in miR-29b-3p expression in PCa (p=0.007) (Figure 1B). The mean expression of hsa-mir-29c-3p in PCa (0.619±0.518) and BPH (1.219±0.935) groups were statistically different (p<0.005) (Figure 1C). In summary, downregulation of the miR-29 family (hsa-mir-29a-3p, hsa-mir-29b-3p and hsa-mir-29c-3p) was observed in the PCa group, while the opposite was observed in BPH compared to PCa.


In this study, the expressions of DNMT3A and DNMT3B from the DNMT3 family were also analyzed by RT-qPCR method in both groups. Significant differences were observed in DNMT3A and DNMT3B gene expressions in both groups (Figure 2A-2B). The DNMT3A expression was significantly higher in the PCa group compared to BPH (3.929 \pm 2.156 vs. 1.181 \pm 0.72; (p<0.001) (Figure 2A). These results suggest that DNMT3A expression was significantly upregulated in the PCa group. The DNMT3B expression were significantly higher in the PCa group compared to BPH (5.281 \pm 2.604 vs. 1.382 \pm 1.142; p<0.001) (Figure 2B). DNMT3B expression was significantly upregulated in PCa. The results obtained from the studied DNMT3 family show

that *DNMT3A/3B* mRNA expressions were significantly increased in PCa group compared to BPH in contrast to *miR-29a/b/c* expressions.

Negative Correlation between miR-29 Family and *DNMT3A/3B* Expressions in BPH and PCa

The relationship between miR-29a/b/c and DNMT3A/3B expressions were evaluated by Pearson correlation analysis. Table 3 showed the correlation coefficients and significance levels between miR-29a/b/c and DNMT3A/3B expressions in BPH and PCa tissues.

There were negative correlations between *miR-29a/b/c* and *DNMT3A/3B* expressions in both groups. In the BPH, only *miR-29a* was significantly correlated with *DNMT3B* (r=-0.675, p=0.016), while no significant correlations were found for the others. In the PCa, *miR-29a/b/c* and *DNMT3A/3B* expressions had significant negative correlations (p<0.001) (Table 3). The results of this analysis further suggest that an increasing level of the studied miR-29 family members decreases *DNMT3A/3B* expressions or a decreasing expression of the studied miR-29s leads to an enhancement of *DNMT3A/3B*. Figure 3 showed the interrelationship between *miR-29a/b/c* and *DNMT3A/3B* in BPH group that was analyzed with linear regression.

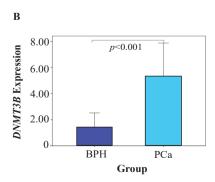


Figure 2. DNMT family expressions of BPH and PCa groups. A: DNMT3A expression. B: DNMT3B expression. β -actin was used as an internal control.

Table 3. Correlation coefficients and significance levels between miR-29a/b/c and DNMT3A/3B expressions in BPH and PCa tissues.

_	ВРН			PCa				Total				
miRNA	DNMT3A		DNMT3B		DNMT3A		DNMT3B		DNMT3A		DNMT3B	
	r	<i>p-</i> value										
hsa-mir-29a-3p	-0.383	0.110	-0.608	0.016	-0.675	0.006	-0.873	0.000	-0.652	0.000	-0.778	0.000
hsa-mir-29b-3p	-0.101	0.500	-0.262	0.240	-0.670	0.006	-0.824	0.000	-0.544	0.002	-0.621	0.000
hsa-mir-29c-3p	-0.315	0.176	-0.174	0.372	-0.753	0.001	-0.889	0.000	-0.545	0.002	-0.539	0.002

Although a negative correlations were observed between relative miR-29a/b/c and DNMT3A/3B expression in BPH, statistically significant correlation only be found between miR-29a and DNMT3B was confirmed by linear regression analysis (R²=0.3707, p=0.016). In general, the expression of relative miR-29 family members studied in BPH was confirmed to be negatively correlated with DNMT3A/3B by linear regression analysis. Increased expression of miR-29a/b/c resulted in decreased expression of DNMT3A/3B in the BPH group. On the other hand, enhanced DNMT3A/3B expressions were associated with decreased miR-29a/b/c expression. Only miR-29a expression was statistically significant with DNMT3B (p<0.05) (Figure 3B).

A linear regression analysis determined that relative miR-29a/b/c expressions had a statistically significant negative correlation with DNMT3A/3B in the PCa group in general (p<0.001) (Figure 4). In the PCa, increased DNMT3A/3B expression was correlated with decreased miR-29a/b/c expressions. The negative correlation suggests that miR-29a/b/c expressions contributes as a tumor suppressor.

Discussion

miR-29 is divided into two main groups: miR-29a/miR-29b-1 on chromosome 7q32.3 and miR-29c/miR-29b-2 on chromosome 1q32.2. The hsa-mir-29a-3p, hsa-mir-

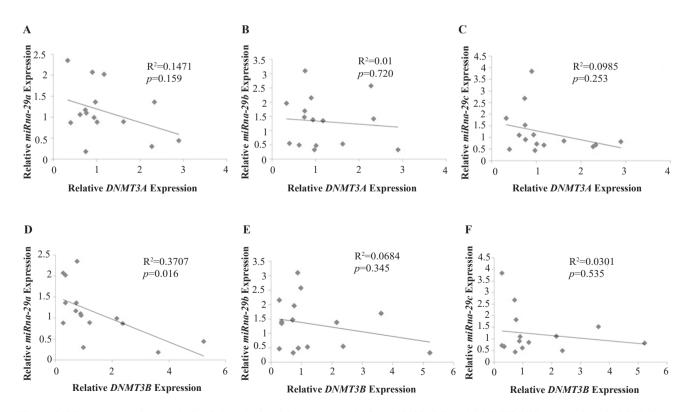


Figure 3. Linear regression analysis of the relationship between relative miR-29a/b/c and DNMT3A/3B expressions in BPH tissue. A: Analysis between miR-29a with DNMT3A. B: Analysis between miR-29b with DNMT3A. C: Analysis between miR-29c with DNMT3A. D: Analysis between miR-29a with DNMT3B. E: Analysis between miR-29b with DNMT3B. F: Analysis between miR-29c with DNMT3B.

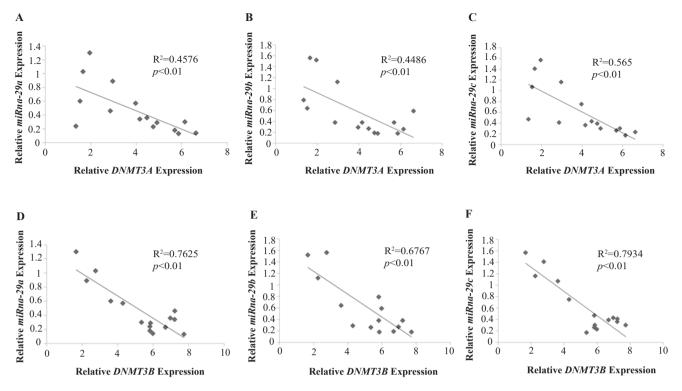


Figure 4. Linear regression analysis of the relationship between relative miR-29a/b/c and DNMT3A/3B expressions in PCa tissue. A: Analysis between miR-29a with DNMT3A. B: Analysis between miR-29b with DNMT3A. C: Analysis between miR-29c with DNMT3A. D: Analysis between miR-29a with DNMT3B. E: Analysis between miR-29b with DNMT3B. F: Analysis between miR-29c with DNMT3B.

29b-3p, and hsa-mir-29c-3p from the miR-29 family were evaluated in this study. Decreased miR-29 expression has been reported in various cancers, suggesting its role as a tumor suppressor and potential prognostic and diagnostic marker. It has been found downregulated in lung, gastric, bladder, ovarian, and endometrial cancers, as well as in acute lymphocytic leukemia (ALL), acute myeloid leukemia (AML), and chronic lymphocytic leukemia (CLL).(15,18) A significant downregulation of miR-29a, miR-29b, and miR-29c in the PCa group was also found, while their expression was elevated in the BPH compared to the PCa (Figure 1).

Significant downregulation of *miR-29a/b/c* in prostate cancer, indicating its role as a tumor suppressor.(19) miR-29 acts as a tumor suppressor in various hematological malignancies.(20) The decreased miR-29 expression with lower survival rates in mantle cell lymphoma and increased risk of metastasis and recurrence in colon cancer.(16) The increased miR-29 induces apoptosis in hepatocellular carcinoma cells, while decreased miR-29 promotes tumor growth and metastasis.(18) Studies had shown that *miR-29a* overexpression with improved survival in stage II colon cancer, while *miR-29b* downregulation was associated with increased metastasis in PCa due to its effect on the epithelial-mesenchymal transition pathway.(21-24) Additionally,

upregulation of *miR-29c* in lung cancer suppressed metastasis by inhibiting cell adhesion and migration. It has been determined that each member of miR-29 can show different expression profiles in different types of cancer.(15)

Hypermethylation of tumor suppressor gene promoters can promote cancer development. The key enzymes involved are *DNMT3A* and *DNMT3B*, which are typically overexpressed in many cancers, indicating a poor prognosis. (18) This study with PCa patients showed increased DNMT3A/3B expressions. Another research on lung cancer reported that the DNMT3 family enhances tumor growth by silencing several tumor suppressor genes.(25) Studies have shown that the miR-29 family binds to the 3'-UTR of DNMT3A/3B, silencing these DNA methyltransferases. miR-29 can repress and maintain DNA methylation, targeting DNMT3A/3B to restore normal methylation. Tumor studies have revealed a negative correlation between miR-29a/b/c and DNMT3A/3B expression.(16,17,26) The miR-29 family negatively regulates DNMT3A/3B in liver, stomach, and lung cancers.(15)

Within the scope of this research, the results of studies that proved a correlation between miR-29 family and *DNMT3A/3B* expressions in BPH and PCa patient groups was also analyzed. As the result of the analysis of RT-qPCR

data, we found a statistically significant negative correlation only between miR-29a and DNMT3B in the BPH, while a non-significant negative correlation was shown with the others. On the other hand, a significant negative correlation between miR-29a and DNMT3A/3B was detected in the PCa in general.

miR-29a has a complex role in targeting, promoting demethylation of genes in leukemia but also increasing methylation by targeting Ten-Eleven Translocation (TET) and Thymine-DNA Glycosylase (TDG).(27) miR-29a can also decrease methylation by targeting the DNMTs in lung cancer.(28) miR-29a sometimes shows differential expression and regulation compared to other miR-29 members.(15)

A study of 42 BPH controls and 81 PCa patients found that *DNMT3B* gene C/T polymorphism frequencies were 26% and 20% for CC, 52% and 42% for CT, and 21% and 38% for TT, respectively. These findings suggest that *DNMT3B* polymorphism may increase promoter methylation of tumor suppressor genes, promoting prostate cancer progression.(29) Similarly, another study had shown that the C/T polymorphism in the *DNMT3B* promoter region as a risk factor for lung cancer.(30)

Research has indicated that miR-29b was positively associated with the progression of breast cancer.(31) Meanwhile, another study on pancreatic cancer tissue reported a negative association between miR-29b and DNMT3B, showing that miR-29b overexpression reduces cell viability and induces apoptosis. A luciferase reporter assay confirmed miR-29b's ability to target DNMT3B directly. (32) miR-29b also negatively correlated with DNMT3A/3B in ovarian cancer.(33) Silencing miR-29b upregulates DNMT3A/3B expression, while miR-29b overexpression decreases it. It is hypothesized that DNMT3A/3B might also repress miR-29b through DNA methylation. The results of this research found a significant negative correlation between miR-29b and DNMT3A/3B in PCa patients, but a non-significant negative correlation in BPH, suggesting miR-29b's effect on DNMT3B might be less pronounced in BPH due to other regulatory mechanisms.

In a study of 50 gastric cancer tissue samples, downregulation of *miR-29b/c* was significantly and negatively correlated with *DNMT3A* expression, which is implicated in tumorigenesis, and promoting its inhibition. Conversely, *DNMT3A* has been shown to repress *miR-29b/c* through DNA methylation processes.(21) In melanoma development, *miR-29c* expression has also been inversely correlated with *DNMT3A/3B*.(34,35) In this study, there were a significant negative correlation between *miR-29c*

and *DNMT3A/3B* in the PCa, while *miR-29c* showed a non-significant negative correlation with *DNMT3A/3B* in BPH. These findings indicate that *miR-29c* may regulate *DNMT3A/3B* in PCa, however, its impact on BPH appears to be less significant compared to *miR-29a. miR-29c* targets the DNMT family and matrix metalloproteinase (MMP2) in pancreatic cancer tissue, where MMP2 is typically elevated. They also found that *miR-29c* expression is decreased in digestive tract cancers, and its increased expression correlates with factors such as tumor size, metastasis, and cancer stage.(34,36)

In lung cancer, an inverse correlation between miR-29 family members and DNMT3A/3B. Studies on non-small cell lung cancer (NSCLC) indicated that upregulation of miR-29 family expression can silence DNMT3A/3B mRNA, leading to demethylation of tumor suppressor genes and suppressing tumor growth. Conversely, downregulation of miR-29 family expression upregulates DNMT3A/3B mRNA, promoting methylation of tumor suppressor genes and facilitating tumor growth. Further investigation is needed to elucidate the various roles of miR-29c in the progression of BPH and its interactions with other target genes.(28) However, the miR-29 family can also act as a promoter of metastasis in certain cancers, despite its downregulation in most cases. There are reports of upregulated miR-29 members functioning oncogenically in specific cancer types.(18) For instance, upregulation of miR-29a in bladder cancer urine samples, with significant reduction after tumor removal.(15)

This study only includes a small sample size of 30 patients, which may restrict the generalizability of the findings, and focus solely on tissue samples from PCa and BPH patients, potentially overlooking a wider range of prostate disorders. To address these issues, future research should involve larger and more diverse cohorts, as well as longitudinal studies to better understand the temporal dynamics of miR-29 in PCa progression. Furthermore, investigating the functional mechanisms by which miR-29 regulates *DNMT3A* and *DNMT3B*, along with its interactions with other molecular pathways, could provide valuable insights for developing targeted therapeutic strategies.

Conclusion

Based on the results of this study, *miR-29a/b/c* expressions are significantly down-regulated in PCa group compared to BPH, and statistically significant negative correlation is found between miR-29s and *DNMT3A/3B* in PCa, whereas

in BPH a significant correlation was found only between *miR-29a* and *DNMT3B*. These results suggest that *miR-29a/b/c* may act as a negative regulator directly targeting *DNMT3A/3B* in prostate cancer. Therefore, the correlation between *miR-29a/b/c* and *DNMT3A/3B* might be useful in the development of novel diagnostic targets for epigenetic therapy of malignant PCa in the future.

Acknowledgments

The authors are grateful to Suleyman Demirel University, Scientific Research Fund (TYL-2022-8740) for supporting this study.

Authors Contribution

YGF and NŞC were involved in concepting and planning the research. YGF performed the experiment under the supervision of NŞ and OS. MYT and YGF carried out the laboratory work dan performed the data acquisition/collection. YGF and MC calculated the experimental data and performed the analysis. YGF drafted the manuscript and designed the figures for interpreting the results. YGF and NŞC did the proofreading, guided the preparation, and finalized the manuscript for publication. All authors took parts in giving intellectual contribution and critical revision of the manuscript.

References

- 1. Ferlay J, Colombet M, Soerjomataram I, Mathers C, Parkin DM, Piñeros M, *et al.* Estimating the global cancer incidence and mortality in 2018: GLOBOCAN sources and methods. Int J Cancer. 2019; 144(8): 1941–53.
- Lim KB. Epidemiology of clinical benign prostatic hyperplasia. Asian J Urol. 2017;4(3):148-51.
- Krieger JN, Lee SWH, Jeon J, Cheah PY, Liong ML, Riley DE. Epidemiology of prostatitis. Int J Antimicrob Agents. 2008; 31(Suppl 1): 85–90.
- World Health Organization International Agency for Research on Cancer (IARC) [Internet] Latest world cancer statistics – GLOBOCAN 2012: Estimated Cancer Incidence, Mortality and Prevalence Worldwide in 2012 [cited 2023 Jan 10]. Available from: https://www.iarc.who.int/news-events/latest-world-cancerstatistics-globocan-2012-estimated-cancer-incidence-mortalityand-prevalence-worldwide-in-2012/.
- Hacıislamoğlu A, Evren İ, Yavuzsan AH, Yiğitbaşı İ, Ekşi M, Şeker KG, et al. Prostat spesifik antijenin akut uriner retansiyon sonrası uretral kateter yerleştirilen ve benign prostat hiperplazisi olan hastalarda prostat adenokarsinomu saptamadaki rolü. Yeni Üroloji

- Dergisi. 2020; 15(3): 158-63.
- Čugalj Kern B, Trebušak Podkrajšek K, Kovač J, Šket R, Jenko Bizjan B, Tesovnik T, *et al*. The role of epigenetic modifications in late complications in type 1 diabetes. Genes. 2022; 13(4): 705. doi: 10.3390/genes13040705.
- Ramassone A, Pagotto S, Veronese A, Visone R. Epigenetics and MicroRNAs in Cancer. Int J Mol Sci. 2018; 19(2): 459. doi: 10.3390/ijms19020459.
- Meiliana A, Dewi NM, Wijaya A. Cancer genetics and epigenetics in cancer risk assessment. Mol Cell Biomed Sci. 2021; 5(2): 41–61.
- Chin SP, Dickinson JL, Holloway AF. Epigenetic regulation of prostate cancer. Clin Epigenetics. 2011 Aug; 2(2): 151–69.
- Jin B, Li Y, Robertson KD. DNA methylation: Superior or subordinate in the epigenetic hierarchy? Genes Cancer. 2011; 2(6): 607–17.
- Peng Y, Croce CM. The role of MicroRNAs in human cancer. Signal Transduct Target Ther. 2016; 1: 15004. doi: 10.1038/sigtrans.2015.4.
- Ekowati AL, Pramono ZAD, Soeselo DA, Budiyanto A, Astuti I, Mubarika S. hsa-miR-376c-3p in the circulating plasma is upregulated in the elderly Javanese male when compared to their younger counterparts. Indones Biomed J. 2019: 11(3): 225–337.
- Konaç E ÖHSS. Üroonkolojide MikroRNA (miRNA)'ların yeri ve önemi. Uronkoloji Bülteni. 2010; 9(1): 3–13.
- Meiliana A Wijaya A. Identification of biomarkers for prostate cancer. Indones Biomed J. 2014; 6(3): 123–36.
- Nguyen TTP, Suman KH, Nguyen TB, Nguyen HT, Do DN. The role of miR-29s in human cancers - An Update. Biomedicines. 2022; 10(9): 2121. doi: 10.3390/biomedicines10092121.
- Morita S, Horii T, Kimura M, Ochiya T, Tajima S, Hatada I. miR-29 represses the activities of DNA methyltransferases and DNA demethylases. Int J Mol Sci. 2013; 14(7): 14647–58.
- 17. Wu F, Yang Q, Mi Y, Wang F, Cai K, Zhang Y, et al. miR-29b-3p inhibitor alleviates hypomethylation-related aberrations through a feedback loop between miR-29b-3p and DNA methylation in cardiomyocytes. Front Cell Dev Biol. 2022; 10: 788799. doi: 10.3389/fcell.2022.788799.
- 18. Jiang H, Zhang G, Wu JH, Jiang CP. Diverse roles of miR-29 in cancer (review). Oncol Rep. 2014; 31(4): 1509–16.
- Nishikawa R, Goto Y, Kojima S, Enokida H, Chiyomaru T, Kinoshita T, et al. Tumor-suppressive microRNA-29s inhibit cancer cell migration and invasion via targeting LAMC1 in prostate cancer. Int J Oncol. 2014;45(1): 401–10.
- 20. Amodio N, Rossi M, Raimondi L, Pitari MR, Botta C, Tagliaferri P, *et al.* miR-29s: A family of epi-miRNAs with therapeutic implications in hematologic malignancies. Oncotarget. 2015; 6(15): 12837–61.
- Cui H, Wang L, Gong P, Zhao C, Zhang S, Zhang K, et al. Deregulation between miR-29b/c and DNMT3A is associated with epigenetic silencing of the CDH1 gene, affecting cell migration and invasion in gastric cancer. PLoS One. 2015; 10(4): e0123926. doi: 10.1371/ journal.pone.0123926.
- Weissmann-Brenner A, Kushnir M, Yanai GL, Aharonov R, Gibori H, Purim O, et al. Tumor microRNA-29a expression and the risk of recurrence in stage II colon cancer. Int J Oncol. 2012; 40(6): 2097–103.
- 23. Ru P, Steele R, Newhall P, Phillips NJ, Toth K, Ray RB. miRNA-29b suppresses prostate cancer metastasis by regulating epithelial-mesenchymal transition signaling. Mol Cancer Ther. 2012; 11(5): 1166–73.
- 24. Wang H, Zhu Y, Zhao M, Wu C, Zhang P, Tang L, et al. miRNA-29c suppresses lung cancer cell adhesion to extracellular matrix and metastasis by targeting integrin β1 and matrix metalloproteinase2 (MMP2). PLoS One. 2013; 8(8): e70192. doi: 10.1371/journal. pone.0070192.

- Kwon JJ, Factora TD, Dey S, Kota J. A systematic review of miR-29 in cancer. Mol Ther Oncolytics. 2019; 12: 173–94.
- Wu H, Zhang W, Wu Z, Liu Y, Shi Y, Gong J, et al. miR-29c-3p regulates DNMT3B and LATS1 methylation to inhibit tumor progression in hepatocellular carcinoma. Cell Death Dis. 2019; 10(2): 48. doi: 10.1038/s41419-018-1281-7.
- Oliveira LH, Schiavinato JL, Fráguas MS, Lucena-Araujo AR, Haddad R, Araújo AG, et al. Potential roles of microRNA-29a in the molecular pathophysiology of T-cell acute lymphoblastic leukemia. Cancer Sci. 2015; 106(10): 1264–77.
- Fabbri M, Garzon R, Cimmino A, Liu Z, Zanesi N, Callegari E, et al. MicroRNA-29 family reverts aberrant methylation in lung cancer by targeting DNA methyltransferases 3A and 3B. Proc Natl Acad Sci USA. 2007; 104(40): 15805–10.
- Singal R, Das P, Manoharan M, Reis I, Schlesselman J. Polymorphisms in the DNA methyltransferase 3b gene and prostate cancer risk. Oncol Rep. 2005; 14(2): 569–73.
- Shen H, Wang L, Spitz M, Hong W, Mao L, Wei Q. A novel polymorphism in human cytosine DNA-methyltransferase-3B promoter is associated with an increased risk of lung cancer. Cancer Res. 2002; 62(17): 4992–5.
- Savitri M, Bintoro UY, Sedana MP, Diansyah MN, Romadhon PZ, Amrita PNA, et al. Circulating plasma miRNA-21 as a superior

- biomarker compared to CA 15-3: Assessment in healthy age matched subjects and different stage of breast cancer patients. Indones Biomed J. 2020; 12(2): 157–64.
- Wang T, Hou J, Jian S, Luo Q, Wei J, Li Z, et al. miR-29b negatively regulates MMP2 to impact gastric cancer development by suppress gastric cancer cell migration and tumor growth. J Cancer. 2018; 9(20): 3776. doi: 10.7150/jca.26263.
- Teng Y, Zuo X, Hou M, Zhang Y, Li C, Luo W, et al. A double-negative feedback interaction between microRNA-29b and DNMT3A/3B contributes to ovarian cancer progression. Cell Physiol Biochem. 2016; 39(6): 2341–52.
- Alizadeh M, Safarzadeh A, Beyranvand F, Ahmadpour F, Hajiasgharzadeh K, Baghbanzadeh A, et al. The potential role of miR-29 in health and cancer diagnosis, prognosis, and therapy. J Cell Physiol. 2019; 234(11): 19280–97.
- Nguyen T, Kuo C, Nicholl MB, Sim MS, Turner RR, Morton DL, et al. Downregulation of microRNA-29c is associated with hypermethylation of tumor-related genes and disease outcome in cutaneous melanoma. Epigenetics. 2011; 6(3): 388–94.
- Zou Y, Li J, Chen Z, Li X, Zheng S, Yi D, et al. miR-29c suppresses pancreatic cancer liver metastasis in an orthotopic implantation model in nude mice and affects survival in pancreatic cancer patients. Carcinogenesis. 2015; 36(6): 676–84.